domingo, 8 de diciembre de 2013

Logaritmos



Definición:


 En matemáticas, el logaritmo de un número, en una base de logaritmo determinada es el exponente al cual hay que elevar la base para obtener dicho número. Por ejemplo, el logaritmo de 1000 en base 10 es 3, porque 1000 es igual a 10 a la potencia 3: 1000 = 103 = 10×10×10.
De la misma manera que la operación opuesta de la suma es la resta y la de la multiplicación la división, el cálculo de logaritmos es la operación inversa a la exponenciación de la base del logaritmo.


Historia:


  El método de cálculo mediante logaritmos fue propuesto por primera vez, públicamente, por John Napier, en 1614, en su libro titulado Mirifici Logarithmorum Canonis Descriptio. Joost Bürgi, un matemático y relojero suizo al servicio del duque de Hesse-Kassel, concibió por primera vez los logaritmos; sin embargo, publicó su descubrimiento cuatro años después que Napier. La inicial resistencia a la utilización de logaritmos fue cambiada por Kepler, por el entusiasta apoyo de su publicación y la impecable y clara explicación de cómo funcionaban.
Este método contribuyó al avance de la ciencia, y especialmente de la astronomía, facilitando la resolución de cálculos muy complejos. Los logaritmos fueron utilizados habitualmente en geodesia, navegación marítima y otras ramas de la matemática aplicada, antes de la llegada de las calculadoras y computadoras. Además de la utilidad en el cálculo, los logaritmos también ocuparon un importante lugar en las matemáticas más avanzadas; el logaritmo natural presenta una solución para el problema de la cuadratura de un sector hiperbólico ideado por Gregoire de Saint-Vincent en 1647.
Napier no usó una base tal como ahora se entiende pero, sus logaritmos, como factor de escala, funcionaban de manera eficaz con base 1/e. Para los propósitos de interpolación y facilidad de cálculo, eran útiles para hallar la relación r en una serie geométrica tendente a 1. Napier escogió r = 1 - 10−7 = 0,999999 (Bürgi eligió r = 1 + 10−4 = 1,0001). Los logaritmos originales de Napier no tenían log 1 = 0, sino log 107 = 0. Así, si N es un número y L es el logaritmo, Napier calcula: N = 107(1 − 10−7)L. Donde (1 − 10−7)107 es aproximadamente 1/e, haciendo L/107 equivalente a log1/e N/107. Véase logaritmo neperiano.
Inicialmente, Napier llamó números artificiales a los logaritmos y números naturales a los antilogaritmos. Más tarde, Napier usa la palabra logaritmo en el sentido de un número que indica una proporción: λόγος (logos) el sentido de proporción, y ριθμός (arithmos) significado número, y se define, literalmente, como un número que indica una relación o proporción. Se refiere a la proposición que fue hecha por Napier en su teorema fundamental, que establece que la diferencia de dos logaritmos determina la relación de los números a los cuales corresponden, de manera que una progresión aritmética de logaritmos corresponde a una progresión geométrica de números. El término antilogaritmo fue introducido a finales de siglo xvii y, aunque nunca se utilizó ampliamente en matemáticas, perduró en muchas tablas, hasta que cayó en desuso.




¿Por qué se empezaron a usar los logaritmos?

Los logaritmos se inventaron alrededor de 1590 por John Napier (1550-1617).
Su enfoque de los logaritmos era muy diferente al nuestro; se basaba en la relación entre secuencias aritméticas y geométricas y no en la actual como función inversa (recíproca) de las funciones exponenciales. La tablas de Napier,publicadas en 1614, contenían los llamados logaritmos naturales y eran algo difíciles de usar. Su importancia para el cálculo fue inmediatamente reconocida y alrededor de 1650 se imprimían en lugares tan lejanos como China. Dichas tablas siguieron siendo una poderosa herramienta de cálculo hasta el advenimiento de las calculadoras manuales de bajo precio alrededor de 1972, lo que ha disminuido su importancia como instrumento de cálculo, pero no su importancia teórica. Un efecto colateral de la invención de los logaritmos fue la popularización de la notación del sistema decimal  para los números reales.

Manuel Nieto Arjona
Manuel Bravo Santiago


No hay comentarios:

Publicar un comentario